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Abstract

Autonomous vehicle (AV) safety relies heavily on communication networks as well as reliable
perception systems. However, both face significant challenges under adverse weather conditions
and complex traffic conditions. Investigating how modern network-based communication
architectures, such as Internet of Vehicles (IoV), Vehicle-to-Everything (V2X) systems, and
5G/6G-enabled edge computing, can enhance safety and the decision-making performance of
AVs is crucial in creating safer environments on the road when visibility and sensor reliability
are degraded. Examining current literature, case studies, and recent advances in sensor fusion,
low-latency networking, and cooperative perception assists in identifying the mechanisms,
limitations, and design considerations that support resilient AV operation in dynamic
environments. A consolidated framework describing how communication architecture, edge
intelligence, and multi-sensor integration interact to maintain AV safety is contributed to
enabling more reliable performance in real-world adverse scenarios.
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1. Introduction

Autonomous vehicles rely on a combination of onboard sensing, intelligent decision-making
algorithms, as well as network-based communication in order to safely navigate various real-
world environments. Under ideal weather and traffic conditions, many AV systems are able to
perform in a reliable manner. When adding rain, fog, snow, and dense or unpredictable traffic
patterns, major challenges arise. Adverse weather reduces visibility, degrades sensor accuracy,
and also increases perception uncertainty. Similarly, heavy traffic that changes rapidly requires
faster and more reliable communication among vehicles and infrastructure to aid in the
prevention of collisions and to maintain situational awareness.

As vehicle automation advances, communication technologies such as Vehicle-to-Vehicle
(V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Network (V2N), and [oV systems have
become essential components of AV safety. Emerging 5G and 6G networks, along with multi-
access edge computing (MEC), enable low-latency data exchange and distributed intelligence
that can support AV decision-making during sensor degradation. At the same time, cooperative
perception and sensor fusion frameworks allow vehicles to share information to mitigate the
effects of occlusions and weather-related visibility loss.

Addressing AV safety in various environments is critical for mitigating risk in real-world
scenarios. To be able to deploy AVs, reliability is required across all conditions. Adverse
weather is a leading cause of sensor failure within current systems. Additionally, network-based
safety mechanisms can assist with reducing dependence on local sensors. V2X allows vehicles to
share perception data and warnings even when the visibility is limited. Low-latency
communications assist with improving reaction time, as 5G/6G, and edge computing enables
near real-time updates that aid in preventing collisions in dynamic environments. Overall,
understanding system limitations supports creating safer designs. Examining vulnerabilities in
sensors, communication networks, and traffic coordination helps identify the gaps that must be
resolved for full autonomy.

This project is aimed at better understanding, communicating, and helping AV manufacturers to
design their vehicles to navigate adverse weather conditions and road construction in the safest
manner possible. We will explore the technology and ideologies that can create a safer and more
reliable Autonomous Vehicle experience when traveling in adverse weather or high construction
areas. To do so, we will explore different research that includes predictive models from human-
drivers, case studies from AV manufacturers like Waymo and Tesla, V2X systems, multiple
types of sensors, and the inclusion of all sensors in one AV architecture.

Key Questions:

1. How can predictive modeling of extreme weather hazards aid real-time navigation
decisions for AV safety?

2. How do 5G/6G networks and edge computing improve safety through low-latency
communication, and what delays remain problematic in adverse conditions?

3. How can V2X communication assist safety amongst autonomous vehicles when
weather reduces sensor performance?

4. How do autonomous vehicles safely handle detours and work zones?



5. What are the most critical design features and technologies that enhance passenger
and driver safety in modern vehicles?

2. Related Work

[4] U. Yusuf, S. Khan, and R. Souissi, “Vehicle-to-everything (V2X) in the autonomous
vehicle domain — A technical review of communication, sensor, and Al technologies for
road user safety,” Transportation Safety and Environment, 2024.

This article is an extensive review of V2X technologies and highlights the important role of low-
latency communication for autonomous vehicle safety. It focuses on how 5G and the upcoming
6G networks enable cooperative perception, real-time hazard sharing, and reliable
communication between vehicles, infrastructure, and people who are driving. The authors
emphasize that safety for critical applications needs very reliable, low-delay messaging, which
5G NR-V2X and edge computing architectures are specially designed to support. These
applications include emergency braking alerts, VRU warnings, intersection collision avoidance,
etc. However, the review also shows reoccurring challenges such as non-line-of-sight (NLOS)
signal obstructions, adverse weather conditions that force automated vehicles to rely heavily on
network-assisted sensing, channel congestion in dense traffic, and increasing latency budgets.
These limitations identify that unresolved delay sources continue to be a problem for consistent
real-time decision-making, even with SG/MEC technologies very enhanced in AV safety. This
article directly answers the research questions: “How do 5G/6G networks and edge computing
improve safety through low-latency communication, and what delays remain problematic in
adverse conditions?”

[11] Chen, P., Shi, L., Wang, H., & Xu, J. (2021). Predicting traffic accident risks under
extreme weather conditions using machine learning methods. Accident Analysis &
Prevention, 162, 106358.

This paper studies how machine learning can predict accident risk when under extreme weather
conditions. The authors’ idea is to incorporate historical crash data with different weather
conditions. The study looks at different methods/algorithms of combining crash data and weather
conditions like random forests, gradient boosting, and neural networks. Random forests are used
as a learning method for the models to create a relationship between weather conditions and
accident likelihood, gradient boosting is an iterative learning method that uses the errors of
previous trees to improve predictions, and neural networks are used to analyze and encapsulate
patterns in the crash and weather condition combined dataset. The authors use these algorithms
in their models and discover that those using weather conditions as well as date and time data.
The results they find show that weather conditions play a significant role in accident likelihood,
and ML-based prediction systems can be utilized to better traffic management and safety alerts.
This helps to answers the research question: “How can predictive modeling of extreme weather
hazards aid real-time navigation decisions for AV safety?”

[13] Luo, H., Wang, X., Yin, X., Sun, L., Xie, Y., Peng, X., ... & Hu, J. (2023). Multi-modal
learning for AV perception in adverse weather. Sensors, 23(18), 7693.
This paper studies how multi-modal learning techniques can be designed to aid AV perception in



adverse weather. The authors’ proposed approach is to create a fusion framework that integrates
LiDAR, radar, cameras, and thermal data with deep neural networks (like those talked about in
[11]) to accommodate the weaknesses of each sensor type. The results show that in fog, rain, and
snow the multi-modal models improve object detection accuracy and range in comparison to
single-modal sensors. This helps to answers the research question: “How can predictive
modeling of extreme weather hazards aid real-time navigation decisions for AV safety?”

[14] Han, K., & Twumasi-Boakye, R. (2024). Deep learning for weather prediction: A
comprehensive review. Artificial Intelligence Review, 57(3), 4381-4412.

This paper establishes a review of deep learning methods applied to weather prediction. The
review covers deep learning models that use CNN-based approaches to models using transformer
architectures and neural networks based on physics. The paper covers how modern Al models
outperform normal numerical weather prediction methods. It also mentions challenges like lack
of sufficient data, the ability to generalize across different areas and regions, computational
limitations, etc. This helps to answers the research question: “How can predictive modeling of
extreme weather hazards aid real-time navigation decisions for AV safety?”

[17] Li, M., Song, T., Chen, R., & Sun, J. (2023). AI-powered object detection and trajectory
prediction for AV navigation in poor weather. IEEE Access, 11, 12345-12357.

This paper studies how Al-driven object detection and trajectory prediction methods can help aid
AVs navigate through adverse weather conditions. The authors create a deep learning framework
that improves detection when there is low visibility as well as incorporating trajectory
predictions to help anticipate what the other vehicles on the road are going to do. Their
framework uses multiple features to do so, including image enhancement, feature extraction, and
motion modeling to maintain the accuracy needed in adverse weather conditions. The results
show that there is improved accuracy in the Al-powered models in comparison to normal models
which shows that Al-powered models are effective in their predictions and insight even in
adverse weather. This helps to answer the research question: “How can predictive modeling of
extreme weather hazards aid real-time navigation decisions for AV safety?”

[18] Singh, P., & Islam, M. (2020). Movement of autonomous vehicles in work zone using
new pavement marking: A new approach. Journal of Transportation Technologies, 10(3),
183-197.

The authors investigate how new pavement marking designs are able to support safer AVs in
hazardous and unpredictable environments called works zones. Within the article, there is
emphasis on how AVs depend heavily on lane markings and road-surface cues to aid in
navigation. However, work zones are often considered disruptive to the cues due to the additions
of temporary lanes, construction signs, and additional factors such as faded markings. There are
several issues mentioned, such as AV vulnerability to ambiguous lane markings, as work zones
contain irregularities within markings or the addition of temporary markings, which confuse AV
perception systems, increasing collision risk. To mitigate risk, a new pavement-marking system
is introduced to enhance visibility with the intention of improving AV detection under disrupted
road conditions. The high contrast within the markings also improves visibility under rain, low
light, or partial occlusion. Regarding research questions, the article assists in answering “how do
autonomous vehicles safely handle detours and work zones?”



[22] L. F. AKkyildiz, S.-C. Lin, and P. Wang, “Wireless software-defined networks (W-SDNs)
and network function virtualization (NFV) for 5G cellular systems: An overview and
qualitative evaluation,” Computer Networks, vol. 93, pp. 66-79, 2015.

This paper explains how 5G cellular systems rely on Wireless Software Defined Networking (W -
SDN) and Network Function Virtualization (NFV) to achieve ultra-low latency, high reliability,
and flexible network control, all of these are required for critical safety applications such as
autonomous driving. The authors describe how SDN separates the control and data planes, which
creates faster routing decisions, dynamic bandwidth allocation, and immediate network
configuration during high mobility. These are all key factors that help minimize communication
delays. NFV better improves performance by virtualizing network functions and deploying them
closer to end users, which is an early conceptual model of modern mobile edge computing
(MEC). This paper also finds many unresolved sources of latency, which includes
synchronization overhead across virtualized functions, congestion in ultra-dense 5G
deployments, signaling delays from centralized SDN controllers, and delay spiked during
handover or rapid user mobility. Overall, this literature helps answer the research question “How
do 5G/6G networks and edge computing improve safety through low-latency communication,
and what delays remain problematic in adverse conditions?”.

[23] C. Flores-Moyano and E. Grampin, “SDN and NFV in 5G mobile networks:
Advancements and challenges,” in Proc. IEEE Latin America Transactions, 2017.

This paper reviews how Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) help 5G networks achieve lower latency and higher flexibility, which is
very important for critical safety applications such as autonomous vehicles. The authors explain
that SND allows faster routing decisions through centralized control, which NFV moves
important network functions closer to users, reducing the time it takes for data to travel across
network. They also highlight many challenges that still make delays, which includes contoller-
switch communication overhead, virtualization processing time, congestion in dense areas, and
delays during mobility events such as handovers. Overall, this article helps answer the research
question “How do 5G/6G networks and edge computing improve safety through low-latency
communication, and what delays remain problematic in adverse conditions?”.

[24] M. Ray and S. Kumar, “A systematic review on SDN/NFV-based edge—cloud IoT
architectures: Challenges and future directions,” Future Generation Computer Systems,
2021.

This paper reviews how combining SDN, NFV, and edge computing can reduce latency in loT
and connected systems by computing and network functions closer to end devices. The authors
explain that SND provides centralized traffic control and faster route adjustments, while NFV
allows key services to run virtualized edge nodes instead of distant cloud servers, which results
in shorter response times. The authors also go over challenges that still make delays, such as high
traffic loads, synchronization issues across distributed nodes, limited edge resources, and
perfromance drops during network congestion or rapid mobility. The paper focuses on loT very
broadly, but these ideas apply directly to autonomous vehicles that depend on how low-latency
edge processing is for safety. Overall, the article supports the research question “How do 5G/6G



networks and edge computing improve safety through low-latency communication, and what
delays remain problematic in adverse conditions? “.

3. Safety Centric Design for Autonomous Vehicles

The safety of Autonomous Vehicles (AVs) is a drastically important and constantly evolving
issue within the world of AVs. The more you analyze the idea of a fully autonomous vehicle, the
more issues and challenges that arise. Unlike a normal vehicle, AVs do not have a driver that can
physically see the road ahead of them and act accordingly to the road. When a human driver is
driving during adverse weather conditions, they are more likely to take the precautions to be able
to create the safest driving experience as possible, like turning their windshield wipers on,
slowing down, or increase following distance. AVs must rely on sensors, cameras, and radars so
how can we decrease the chances of the equipment failing during these harsh conditions. AVs
also must be able to detect and act on obstacles in the road. Humans can see the pothole or traffic
cone on the road, but how can AVs ensure they detect an obstacle quickly and accurately avoid
the obstacle while still ensuring safety? There are many different safety considerations when
designing an autonomous vehicle that are drastically important to ensure the safety of the car and
the passengers riding inside. This section will analyze some of the key aspects and
considerations that are necessary to build and implement a safe and reliable vehicle.

3.1. Special Key Considerations for Safety of the Car and Passengers

Autonomous Vehicle (AV) systems require [oVT and V2X to communicate, allowing them to
operate safely and correctly. This opens these vehicles to outside attack as well. This includes
attacks such as intruder vehicles feeding false information to the network causing issues and
accidents [21]. Communication between vehicles also always involves malicious agents to
interrupt communication between vehicles and/or infrastructure. These attacks include message
modification, GPS spoofing, and Sybil’s assault [21]. Another key security issue is Overhead. As
ITS systems must be very fast and accurate, security measures may slow down the system. There
is also the issue of security vulnerabilities that are a result of different manufacturers' standards
[21].

Autonomous vehicles look to reduce the number of automotive accidents; however, accidents
will still happen, and post-accident safety is considered less. A key example of this is Cruise
taxis in San Francisco. In 2023, a Cruise vehicle was involved in an accident where it dragged a
pedestrian 20 feet due to its post-accident procedure [27]. The vehicle also had no system to
communicate with law enforcement and had no system to check for a person under the vehicle
[27]. The AV also only began communicating with its handler following the incident and
continued to drag the pedestrian for several seconds afterwards [27].

AV will reduce the human component of driving to increase safety. This, however, brings up
problems with human machine interactions. Human drivers may drive in ways that disrupt AVs
and cause delays and problems with traffic flow [34]. Pedestrians also present a problem as they
can act in unpredictable ways, not follow laws, and appear suddenly from blindspots[34].
Vehicles to pedestrian communication are also important. It is relatively easy for a pedestrian to
identify signals from another human, but AVs don’t communicate the same information to
pedestrians [34]. This can cause problems with pedestrians misunderstanding an AVs behavior
[34].

3.2. Detecting, Avoiding, and Mitigating Obstacles on the Roads



A main piece of designing the safety for Autonomous Vehicles is making sure they can detect,
avoid, and mitigate any obstacles on the road. A lot of research has a strong foundation for
knowing how 5G networks, SDN/NFV architectures, and edge computing can improve
communication performance, but there still is a lack of studies that connects these technologies
to autonomous vehicle safety under adverse conditions. An example of this is from the V2X
review by Yusuf et al. [4] talks about how 5G/6G and cooperative communication improve
safety message delivery and reduce latency, but the study does no evaluate how these systems
respond when visibility is bad or when sensors become unreliable due to weather. Similarly, the
foundational 5G architecture work by Akyildiz et al. [22] discusses how SDN and NFV help 5G
networks achieve lower latency, but the paper shows results in ideal networking scenarios and
does not consider sensor degradation, vehicle mobility, or environmental disruptions.
Additionally, the literature on SDN/NFV in 5G mobile networks by Flores-Moyano and
Grampin [23] finds important delay sources such as handovers, congestion, and controller
overhead, yet it does not apply these challenges to critical safety AV scenarios where delays are
completely affecting collision avoidance and hazard detection. Also, the SDN/NFV edge cloud
[oT architecture review by Ray and Kumar [24] elaborates on how distributing computation to
edge nodes can reduce latency, but it does not study how well these systems perform in quick
changing, weather heavy environments or under high traffic which is very common in AV
applications.

Across these four papers, the discussion focuses on theoretical network improvements instead of
practical safety performance during adverse conditions such as rain, fog, or non-line-of-sight
situations. None of the works consider the combined delay around communication, sensing, fast
decision making, and edge process. All of these are critical for autonomous vehicle safety, and
because of this, there is a limited understanding of whether 5G/6G and edge computing can
maintain the necessary reliability and low latency during real-world conditions that bring
unpredictable obstacles and constant interference. Our project addresses this gap by examining
how these technologies behave under these adverse conditions and finding which sources of
delay continue to pose safety risks for autonomous vehicles.

3.3. Extreme Weather Navigation Control for Safety of AV

Extreme weather navigation control focuses on how AVs safely drive through adverse weather
conditions like pouring rain, snow, fog, and ice. This topic is important because adverse weather
can hinder the performance of the sensors and systems in place in AVs that allow them to
operate safely. Common AV sensors like cameras, LIDAR, and radar will lose reliability when
weather blocks signals or introduces unwanted or incorrect signals and information in the sensor
data. With this in mind, extreme and adverse weather conditions are consistently one of the
leading challenges for autonomous vehicles. This challenge must be addressed for AVs to be
released to the public and ensure full reliability of the vehicle. This is because if the AV cannot
make accurate predictions and real-time decisions during adverse weather like those mentioned
previously, then the AV cannot be trusted on the road as these conditions are sometimes
unpredictable. For example, in Florida, random points of heavy rainfall are common when
driving throughout the state, and the AVs must be able to handle these conditions on the spot.

With this issue in mind, there has been a multitude of research that aims to create a more
versatile and accurate prediction and perception system for AVs. One study shows that
uncertainty-aware domain adaptation allows AVs to recognize when their sensors are unreliable
because of weather changes [10]. This uncertainty-aware adaptation approach allows AVs to



adapt to the weather changes by making the correct corresponding safety actions like increasing
following distance. Another study found that multi-modal learning or combining multiple
sensors helps AVs keep consistent awareness even in adverse weather conditions since the
sensors can help each other if one of them fails [13].

Adverse and extreme weather creates and increases driving hazards and risks normally, so
having the sensors and prediction systems that AVs hold can actually provide a benefit to
passengers. A 2021 study showed that machine learning models can predict the chances of
accidents during extreme weather by using historical accident data across environmental
conditions [11]. This study can be further backed up with the findings and methods from Han et
al. [14] who found that using modern Al deep learning techniques on real weather patterns can
create a prediction technology better than normal weather predictions. Using these findings and
results, we can utilize this method so that AVs can make real-time decisions about what roads
and paths to take during the inclement weather. These routing decisions during inclement
weather is also supported by another study that used real-time and data on past weather patterns
to help AVs avoid roads and places that will have low visibility or icy and nonideal road surfaces
[15]. Another viable solution found by Zeng et al. [16] was training the AV perception systems
on synthetic weather data which found that when adding synthetic rain, fog, and snow data to
training images the model can detect obstacles in the road when visibility is low. These methods
combined could create a reliable and safe navigation system that can handle adverse and extreme
weather conditions.

Our contribution is to analyze, summarize, and connect different methods of providing a safer
and reliable navigation system for autonomous vehicles when exposed to inclement and extreme
weather. There are several methods described in this section, 3.3, that describe how sensor
reliability, uncertainty-aware perception systems, combining multiple sensors (multi-modal), risk
of accident prediction and avoidance, as well as real-time decisions on route choices to minimize
the risk of an accident. All these systems, training techniques, and methods can be used in unison
with each other to create a safer and more reliable AV system when proposed with extreme
weather.

3.4. Instructions Damage Protections for the Car on the Roads

Damage protection refers to the set of features and design strategies that help a vehicle prevent,
withstand, and reduce physical damage during real-world driving. For autonomous vehicles, this
involves not only the traditional safety structures found in all modern cars, such as crumple
zones, bumpers, and reinforced side frames, but also protections that maintain the functionality
of the sensing systems that autonomous vehicles rely on to interpret their surroundings. Damage
and failure for things such as radar sensors, LIDAR sensors, and ultrasonic sensors which are all
integral parts of autonomous vehicle functionality, potentially have catastrophic effects on safety
(Matos, Francisco et al, 2024). Therefore, “damage protections” for autonomous vehicles must
address both vehicle body integrity and sensor survivability.

Damage protections for autonomous vehicles sensors include a wide variety of things. As with
all things, sensors in autonomous vehicles don’t only wear down with use but wear down with
time. There are many ways in which AVs protect their sensors, so vehicles remain safe overtime,
First, is the software approach. In AV design, research has extensively targeted the idea of
“sensor fusion” and algorithmic approaches. The idea of sensor fusion is that by combining the
characteristics of AVs sensors, AVs are able to get a better idea of its surroundings and make



better decisions (Matos, Francisco et al, 2024). As relating to damage protections, sensor fusion
is useful, because as sensors degrade performance worsens, or loss of functionality entirely,
instead of just losing functionality of sensing, it is able to use fusion algorithms to work with
other sensors in order for the AV to maintain a safe and operable state, until maintenance on
sensors is achievable. AVs also provide physical damage protections for cars. These are things
like special lens covers for cameras, which help to mitigate damage from ultraviolet light, or
covers for radar and lidar sensors which make help prevent them from damage from debris on
the road, dust, and regular wear and tear from driving conditions, as well as potential accidents.

3.5. Fault-Tolerant Measures: Preventive & Reactive On-Roads

As 0f 2023, 40,990 fatalities occurred regarding motor vehicle crashes [37]. AVs have the
potential to lessen fatality rates through preventive and reactive safety measures and creating
systems that are fault tolerant.

Fault tolerance within AVs is defined as the ability of the system to be able to maintain safe
behavior despite faults in one or more areas such as sensors, software, actuators, or the
environment itself. Regarding on-road operation, this becomes critical as traffic hazards or
adverse weather can degrade perception and reduce control performance.

Many preventive measures originate in the development of the AV and the mechanisms to create
a safe system before allowing the AV to go on the road, creating a safer environment and a
decrease in projected errors rates. Preventive measures implemented to enhance AV safety
include several mechanisms and sensors such as light detection and ranging (LIDAR), which
uses pulses of lasers to create models of the surrounding environment in 3D [38]. Systems also
developed for integration within the AV is Al to enhance decision-making on the road, further
preventing accidents and additional hazards. Cybersecurity protocols are also put in place prior
to allowing the AV on the road to mitigate unauthorized users from tampering with the safety of
the AV as well as the safety of the objects interacting with the AV. In addition to developing
several mechanisms, systems are tested on to ensure validation before on-road implementation.
Reactive measures refer to how the AV reacts to a current event and the response being taken
afterward. Rather than a prevention response, a reactive response includes active decision-
making. For example, traffic hazards are random events requiring the AV to have a reactive
response through robust decision-making. Weather can also introduce a level of randomness
such as heavy rain, snow, or fog that can reduce sensor visibility or road traction, prompting the
AV to adjust driving behavior by lowering speed, and increasing following distance. Reactive
capabilities ensure that, even when unexpected conditions arise, the AV maintains safe operation
through adaptive planning and real-time risk assessment [39].

3.6. How Al Can Improve Safety of AV

Artificial Intelligence (Al) significantly improves the safety and reliability of AVs through a
multitude of factors, such as enhancing perception, prediction, and decision-making. Many
safety challenges such as adverse weather and traffic hazards have prompted the development of
Al-driven methods in order to assist AVs in maintaining safe operation even through
uncertainties.



Al strengthens safety through trajectory prediction as well as behavioral modeling as machine
learning models train on large-scale data to anticipate future events. The predictive ability gives
AVs valuable milliseconds to adjust speed or lane position to reduce errors, such as collision
risks. In complex road environments such as crowded intersections or work zones, Al prediction
models assist in helping the AV understand what is currently occurring and what is likely to
occur next.

Another key safety component is the ability of Al to make decisions in real-time as well as plan
adaptively. AVs must choose safe driving actions in situations involving uncertainty or
insufficient sensor information. Al-based planning systems allow AVs to adjust their behavior
dynamically, such as decreasing speed during rainy conditions or increasing following distances.
Adaptive behaviors help ensure that AVs maintain safe operation even when unexpected
situations arise. Al also improves fault detection and self-monitoring, which assist in early
identification of sensor failures or system abnormalities.

Overall, Al improves AV safety by providing enhanced perception, better anticipation of risk,
and adaptive decision-making. When combined with robust hardware systems and
communication architectures, Al allows autonomous vehicles to operate more safely across a
wide range of environments.

3.7. Strengths and Limitations

AV safety systems offer several strengths that significantly enhance reliability on the road. One
major strength is the use of redundant sensing and Al-driven perception, which allows AVs to
maintain awareness even when certain sensors are degraded by environmental conditions, such
as varying weather. Sensor fusion and predictive modeling improve obstacle detection and help
the vehicle anticipate the behavior of other road users. AVs also benefit from extensive
simulation testing and V2X communication, both of which increase situational awareness and
reduce reaction time in critical safety events.

However, limitations still remain. For example, AV performance can degrade when multiple
sensors fail simultaneously, such as during heavy rain, fog, or snow, where even fusion
algorithms may struggle to produce reliable outputs. Edge cases, particularly those involving
unpredictable pedestrian behavior or temporary construction layout, continue to challenge Al
models that have limited exposure to specific scenarios. Additionally, AV safety is constrained
by data quality and environmental variability, as models trained in one region may not generalize
well to new conditions. External dependencies, such as communication networks, can also create
vulnerabilities during congestion or outages.

Overall, while AVs incorporate strong safety mechanisms, the limitations highlight that further
development in sensing, Al robustness, and system redundancy is required before fully
autonomous operation can be consistently safe across all environments.

4. Case Studies, Examples, and Analysis

4.1. Case Studies

This section provides a few strong case studies from the top markets in autonomous vehicles
including Tesla, Waymo, and Cruise by General Motors. These case studies provide detailed
statistical safety data that can be analyzed to get a better picture of what is needed to make safe



AVs. This section will explore how Tesla and Cruise tackle general safety issues within their AV
systems and how Waymo is handling extreme weather navigation as well as general safety.
These leading companies and innovators in the AV industry can provide a great synopsis of how
the current technology can be used in real world applications to provide a safe riding experience
for users as well as where the companies are trying to expand involving the safety of their
passengers.

4.1.1. Case Study 1

This case study examines Tesla’s approach to autonomous vehicle safety. It has a focus on
system limitations in adverse conditions, perception, and documented safety issues. Tesla’s Full
Self-Driving (FSD) and Autopilot systems mainly rely on cameras for perception, which is
known as Tesla Vision. According to Tesla’s FSD Safety Overview, the system is designed to
use neural networks trained on real-world driving data to detect lanes, vehicles, pedestrians, and
traffic controls, with frequent over-the-air updates to improve performance over time [35]. The
Autopilot Support page further describes that these driver assistance systems are intended to
assist an attentive driver, and the driver must be ready to always take over [36]. On the other
hand, the camera design means that Tesla’s safety performance is very dependent on visibility
and the sensor being clean.

Tesla’s documents understand the important limitations in challenging environments. The Model
3 Owner’s Manuel talks about how the Autopilot may not operate as expected when the cameras
are obstructed, dirty, or affected by weather conditions such as fog, rain, snow, or direct sunlight
that brings a glare. It also states that drivers should not rely on the system under these
circumstances [41]. These limitations directly affect object detection, speed control, and lane
recognition. When vision is poor, the system may not work properly to detect obstacles or
interpret road markings in time for a safe reaction. Tesla’s warnings are made to ensure that
drivers understand the system is not designed to handle all weather conditions and scenarios
because the cameras may not work properly in these environments [41].

There are crash investigations that highlight how these limitations can contribute to safety
failures. The NTSB’s detailed investigation of the Culver City crash, in which a Tesla Model S
on Autopilot collided with a stationary fire truck. This case found that the Autopilot did not
properly detect or respond to the stopped emergency vehicle ahead [39]. The report stated that
the system continued tracking a vehicle that changed lanes, and once that vehicle moved, the
Autopilot did not identify the fire truck in time, which caused the accident. NHTSA’s Autopilot
crash investigation EA22-002 includes similar cases where Tesla's with Autopilot engaged struck
stationary vehicles on highways, which suggests that there is a recurring pattern of difficulty
recognizing stopped or slow obstacles under certain environmental or roadway conditions [40].
These investigations show that even when the system is working as intended, detection delays
and misinterpretations can still happen.

Overall, Tesla shows both the strengths and limitations of heavy perception autonomous driving
systems. While its neural-network-based approach is helped through continuous data collection
and frequent updates, the system’s reliance on camera visibility and its lack of sensing
redundancy make vulnerability in adverse weather and complex visual environments. The
combination of Tesla’s own documented findings and limitations from federal crash
investigations indicates that environmental conditions and detection latency remain significant
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safety challenges. This case study supports the research objective by showing how autonomous
vehicle safety depends on not only local perception, but also the possible role of complementary
systems, such as low-latency communication or additional sensing, in improving reliability under
dangerous conditions.

4.1.2. Case Study 2

This case study will examine and analyze Waymo’s general safety techniques, the handling of
extreme weather, and how Waymo aims to provide riders with a safe and reliable trip under these
adverse conditions. Waymo’s general safety framework creates a foundation for its extreme
weather handling to be built upon. Waymo is one of the largest fully autonomous vehicle
systems which allows them to be able to obtain detailed data on different traffic patterns, road
constructions, as well as human driving behaviors. Waymo often makes the comparison of
performance between the Waymo’s automated drive and human driver data across a multitude of
fully autonomous driving miles, showing reductions in serious injury crashes and low rates of
significant collisions shown in Figure 1 [29]. They also consistently use independent analyses,
performance comparison, and accident review processes to ensure that their safety models are up
to date and refined. This structure that they have in place is a strong foundation for constantly
improving and expanding their safety model to handle different scenarios, one of which being
navigating through extreme weather conditions.

Waymo has done a multitude of research, tests, and continuous brainstorming to ensure that their
AVs are using the safest and most reliable approach for handling extreme weather. Their
approach starts with transforming every AV into a mobile sensing node by using cameras,
LiDAR, and radar signals which allows the AV to predict and understand different weather
conditions like fog density, visibility levels, and precipitation levels [31]. This data is used to
cross-reference with other weather prediction tools to ensure that the AVs prediction is precise
and accurate [31]. The weather prediction maps that the AVs generated provide the vehicles with
a better analysis that, allowing Waymo’s engineers to understand how perception systems work
in even minor environmental changes. This same data is given to hyper-realistic simulations to
give the Waymo team the ability to repeat and analyze different harsh precipitation weather
conditions to continuously refine the perception and navigation technology in their AVs [32].
Waymo also studies and ensures that their hardware advancements can support safer driving
experiences in difficult environments. Better and vaster environmental coverage, thermal
management, and protective design considerations are key factors in maintaining sensor
reliability in difficult weather conditions like heavy rain, dense fog, cold temperatures, and snow
[32]. The hardware improvements Waymo implements all go through closed-course stress tests
and various large-scale simulations before being released on public roads which allows engineers
to show reliability under unexpected conditions [32].

The most important effort for navigating in extreme weather environments that Waymo is
studying and working on is their all-weather autonomous driver. This is especially important for
those areas in the world that have heavy winters that create harsh driving environments. Right
now, Waymo has released vehicles in US locations, Michigan and Upstate New Y ork, because
conditions like snow, sleet, slush, and black ice are common and can all happen in one season
which creates a rigorous testing environment for Waymo’s vehicles [33]. Waymo also has
invested in closed-course facilities that can be used to recreate safe and repeatable tests under
extreme weather scenarios like losing traction on black ice and heavy snow causing extremely
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low levels of visibility [33]. These facilities are also used by the Waymo team to create winter
conditions during different seasons, allowing them to be constantly testing and refining their all-
weather AV [33].

Overall, Waymo and their team of engineers are constantly evolving, improving, and refining
their AV models to ensure the safety of their riders in any condition. They create rigorous and
thorough tests and simulations under multiple different weather conditions prior to releasing
them into the real world for exposure to the elements of real time traffic during these weather
conditions. The combination of these methods allows Waymo to be constantly approaching the
end goal of providing a safe and reliable, but fully autonomous, driving experience even under
extreme weather conditions.

Overall crash reduction

A v

1% /9%

Fewer serious injury or Fewer airbag
worse crashes deployment crashes

L 20 FEWER v 125 FEWER

80%

Fewer injury-causing crashes

+ 304 FEWER

Figure 1: Statistics showing accident and collision rates of Waymo drivers in comparison to
Human drivers [29]

4.1.3. Case Study 3

This case study will examine General Motors autonomous vehicles (AVs) subsidiary Cruise and
an accident that was caused due to unaccounted for edge cases. Cruise was founded in 2013 and
with a focus on autonomous vehicle technology [26]. In 2022 Cruise deployed a fleet of AVs
taxis that were available for use in San Francisco for testing purposes. A key safety idea they
employed their AVs to operate safely was Operational Design Domains (ODD), a set of
conditions in which their autonomous vehicles are designed to function. In the 2022 taxi
deployment the vehicles were restricted to a certain area they could operate in, there were also
constraints for certain traffic elements such as roundabouts that can present issues to an AV, and
specific times to avoid time specific traffic elements [26]. The weather was also a major safety
concern, San Francisco was chosen because it receives low amounts of sleet, snow, and sand.
Even then AV were designed to return to the main facility or safely exit traffic in poor weather
conditions. ODD is used to avoid worse/edge cases that can decrease safety of AVs. Cruise also
implements several backups for important systems in case of malfunction or errors; this keeps
single part failure from causing catastrophic failures like how planes are designed [26]. Even
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with these constraints Cruise AVs were removed from San Francisco following several
accidents. One of these accidents shows several issues that come with Cruise’s safety
implementation. On October 2, 2023, a pedestrian was hit by a human operated vehicle then
dragged 20 feet by one of Cruise’s AVs [27]. The pedestrian entered a crosswalk while they
were signaled not to and was hit by a Nissan vehicle and thrown into the pathway of a Cruise
Taxi. The taxi failed to properly detect collision location and attempted to enter a Minimal Risk
Condition (MRC) [27] defined by Cruise as “a state in which the Cruise AV has minimized
safety risks to the extent possible within the driving context” [26]. In doing so It dragged the
pedestrian 20 feet before stopping due to vehicle motion abnormality and not due to the
pedestrian [27]. Below is a timeline of the vehicle's velocity and acceleration

Pedestrian enters crosswalk
Pedestrian exits AV travel lane
Nissan contacts Pedestrian
Pedestnan begins separating from Nissan
Pedestrian falls into AV travel lane
ADS starts sending braking & steering commands to vehicle
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Figure 2. AV velocity and acceleration profiles from EXPR 43.
Figure 2: AV velocity and acceleration profiles from EXPR 43. [27]

This incident was mostly due to poor implementation of safety. The AV successfully tracked the
pedestrian and determined a collision was likely between the Nissan and the pedestrian but did
not change behavior due to this prediction [27]. The AV also accelerated into the intersection
falling to adhere to California law [27]. Following the collision, the vehicle stopped temporarily
and proceeded forward, dragging the pedestrian. A key safety failure here is not fully considering
pedestrian behavior. This is especially problematic because the vehicle’s prediction did not
consider an interruption that would cause the pedestrian to stop and thus accelerated towards the
pedestrian. Another key issue is the focus on entering an MRC. After the collision was detected,
the vehicle's only focus was to attempt to enter an MRC. This shows that there are less safety
considerations following an accident than there are before an accident. Specifically, the vehicle
did not consider what it had hit even though it tracked the before and during the accident [27].
Another key issue was the lack of a human overview. The Cruise taxi had no human operation
and took 5 seconds to connect to a human operator at which point it was already dragging the
pedestrian. This incident also presents an issue with ODD-focused vehicles. Using ODD work to
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reduce edge cases and make the vehicles more efficient, however, edge cases will still come up
and 1n this case the design response causes untoward harm to a pedestrian. Even if you can
constrain so much, there will be unconsidered edge cases that cause accidents like this.

4.2. Examples

There are many examples that could be included in the subject of autonomous vehicle safety.
Examples are important as they can paint a concrete and short example that is easier to grasp
than an entire case study. These examples still showcase some potential safety challenges and
risks an AV could face.

An example of AVs avoiding obstacles on the road is: During rainfall, a pothole in the road fills
up with water and causes the camera to believe it is a puddle and will not avoid it which in turn
causes a significant bump in the ride and could cause damage to the vehicle.

An example of extreme weather navigation control is: During a drive in Florida, a sudden heavy
downpour comes out of nowhere, which causes the sensors and cameras to not be able to adjust
quickly enough, but an uncertainty-aware perception system causes the vehicle to immediately
increase its following distance and decrease traveling speeds. This example shows the real-time
uncertainty-aware adjustment system Majoros et al. [ 10] introduces.

An example of damage protection for an AV on the road is: During a drive on less maintained
back roads loose rocks are skipping up and hitting the sides of the AV, but the AV uses a tough
scratch-resistant sensor and camera lenses which blocks the rocks from damaging any of the
hardware.

An example showing a key safety consideration for the passengers and the car is: While on a
typical drive someone sends a fake GPS signal near a busy intersection making the AV believe
the intersection is further than it actually is, causing a potential collision when the AV doesn’t
stop. This shows the risk of GPS spoofing and how it can increase the risk of an accident.

An example involving fault-tolerant measures is: During a drive the AV senses that the breaking
is not as responsive as it should be, as soon as this is detected the AV safely pulls over to the side
of the road and alerts the passenger and the AV’s operator.

An example of how Al improves safety of AVs is: During a drive on the highway, there is a car
in the lane to the right of the AV that is hovering over the lane’s marking, Al predicts that the
vehicle is going to merge without a blinker, so to improve safety the AV reacts by increasing the
gap between the AV and the other vehicle to allow them to merge.

4.3. Discussions and Analysis

Across the three case studies and examples shown in section 4.2, a clear pattern with
autonomous vehicles is that they struggle when perception becomes unreliable. Waymo is shown
to handle this the best with its multiple sensors and heavy simulation to maintain accuracy in
rain, fog, and snow. Cruise limits where the vehicle can operate, but its case study shows that
even strict boundaries, unexpected events can still lead to failures. Tesla, which relies on mainly
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cameras, shows the most sensitivity to poor visibility. This is shown through several
investigations that document late detections of vehicles that are at a complete stop.

The examples of section 4.2 support this trend even more. Fog, traffic congestion, and sensor
obstruction all create delays in how fast a vehicle can detect hazards. When detection is delayed,
the vehicle has less time to mitigate or avoid obstacles, increasing the change of unsafe events.
The overall analysis recommends that autonomous vehicles need stronger support systems when
weather or road conditions reduce sensor reliability. Through additional sensing, improved
prediction models, or external information sources, AVs must be able to compensate when local
visibility and perception become limited. This relates to the project’s goals by showing why
improving communication and reducing delay is very important for critical AV safety in real-
world conditions.

5. Project Self-Evaluation

5.1. Phases and Efforts

This project when through four main phases. The first phase was team creation and organization.
This phase focused on creating the team and developing a plan for moving forward and
completing all deliverables in a reasonable time frame. The second phase was topic development
and scope focusing. This phase focused on reducing the scope of our project and redefining our
topic. The third and longest phases were literature review and further topic focusing. This phase
focused entirely on gathering and reviewing academic material that would comprise the majority
of the paper. This phase also further changed and focused on our topics. The final and shortest
phase was paper writing and presentation creation. This phase distilled the information we
obtained in the third phase and was when all deliverables were written

5.2. Project Learning Outcomes

Throughout the project, a deeper understanding of the technical environment and human-
centered challenges involved in AV safety were gained. Topics such as how communication
systems and sensor reliability give a comprehensive perspective into the interactions that support
safe AV performance in real-world environments. The research process strengthened the ability
to evaluate academic literature to compare approaches and identify gaps that still exist within
current AV technology as well as to synthesize the gathered information into a clear analysis.
Overall, the project enhanced technical knowledge of AV systems and improved various skills
such as collaboration, research, and engineering communication.

5.3. Project Strengths and Limitation

The strength of this project is being able to cross reference and analyze multiple different papers
and findings as well as compare them to what is currently being implemented in our case studies.
This will allow us to give our contribution to the science and innovation of autonomous vehicles.
This study takes in many different sources and combines them into a single place for those
looking to find a hub that you can reference to find topics among AV safety that interest you,
learn important details about them, understand how they have been implemented or could be
implemented, and then further research on a more specific and narrowed down topic. This leads
to the limitations of this project, where in this project it is difficult to have many details about
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one topic when the topic of autonomous vehicles is very broad. The scope was narrowed down,
but it would be too much to put a full research focus on each specific topic as it may cause the
reader to not be able to retain or finish the paper as that would too much information to be given
at one time. To minimize this limitation, we ensure that each section has enough detail to inspire
engineers or researchers to want to dive deeper into any of the topics covered.

6. Proposal for Future Work

There are many unanswered and untested questions that arose from this study that we either did
not have the time to solve or did not have the resources and budget to test them. One of the most
important questions that arose from this study is how to take down the cost of all the sensors,
cameras, LIDAR, etc that is needed to create the safe environment that was talked about in
previous sections. In section 3.3, we found that multi-modal AVs provide a much safer riding
experience in adverse weather because if one of the cameras or sensors failed, there was another
that could compensate for this and continue on safely. The issue with this is implementing a
multi-modal system can because expensive, especially when trying to use the top-of-the-line and
safest technology. Future work could be to find ways to combine different sensors or cameras
together or how to manufacture this technology in the most efficient way possible to cut costs to
make the product cheaper for consumers. This future work could be aimed to help consumers if
AVs are going to be sold directly to consumers or could be aimed to help AV manufacturers and
AV taxi services to provide the cheaper rides will still making great profit margins to continue
their own research.

Another idea for future research can be researching how AVs can handle combined
environments that we studied. The most important topic or combination topics would be how
AVs are designed to handle construction and detours while there is heavy rain or snow. This is
an important topic because there are many places where road work is common and can be
ongoing while adverse weather conditions are also happening. In these situations, how are AVs
and AV engineers working to ensure that the optimal detour path is still being followed while
also ensuring that you are not putting the passengers at risk by taking a riskier road with less
snow plowing or drainage. Also, what takes priority with this is it more important to stay on the
shortest path to the destination or avoid back roads and staying on well-maintained roads more
importantly. This topic and these questions are important and should be studied, but due to the
scope of our research we were not able to fully dive into this hypothetical nor be able to run any
type of test or simulation.

A third proposal for future work is researching the lifespan of sensors because this is a very
important topic that we did not get to research due to time constraints. In many sections
throughout this paper, there was talk about adding or improving different sensors, radars, and
cameras, but there was no mention of how long these will last, are they built to withstand
multiple years of life, how long will they still send correct signals and data, what happens when
dirt builds up, does this affect their sensing ability? These are all questions that need to be
answered and studied because technology does not have an infinite life span. Many pieces of
technology, especially items like sensors, can start to give false readings and begin to send noise
as they get older. So, researching how these sensors are built to withstand time as well as being
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able to handle dirty sensors efficiently is of the utmost importance. If this isn’t researched, how
will we know that older AVs with old sensors can be trusted on the roadways?

These are just a few potential options for future work that can evolve from this study. The world
of AVs is constantly growing, and the topic of safety will be everlasting, so researching safety
problems and finding solutions is very important for the future and AVs right now. As already
mentioned, there are plenty of topics and we chose a few that were found throughout our own
research, but there are many more that can be discovered.

7. Conclusions

This study was focused on autonomous vehicle safety measures and safety shortcomings.

As AVs become more prevalent, these safety measures and shortcomings will become
increasingly important. This study highlights important technology, safety concerns, and current
problems. This study asked important questions about safety including fault tolerance measures,
vehicle protection to reduce wear, extreme weather navigation, obstacle avoidance, potential
improvement with applications, and others. This study looked at currently available AVs and
their positive improvement and their failings. This study shows the improvement in safety
technology for AVs but also showed that there was significgant room for improvement in safety
systems.
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