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Abstract 

Autonomous vehicle (AV) safety relies heavily on communication networks as well as reliable 

perception systems. However, both face significant challenges under adverse weather conditions 

and complex traffic conditions. Investigating how modern network-based communication 

architectures, such as Internet of Vehicles (IoV), Vehicle-to-Everything (V2X) systems, and 

5G/6G-enabled edge computing, can enhance safety and the decision-making performance of 

AVs is crucial in creating safer environments on the road when visibility and sensor reliability 

are degraded. Examining current literature, case studies, and recent advances in sensor fusion, 

low-latency networking, and cooperative perception assists in identifying the mechanisms, 

limitations, and design considerations that support resilient AV operation in dynamic 

environments. A consolidated framework describing how communication architecture, edge 

intelligence, and multi-sensor integration interact to maintain AV safety is contributed to 

enabling more reliable performance in real-world adverse scenarios. 
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1. Introduction 

Autonomous vehicles rely on a combination of onboard sensing, intelligent decision-making 

algorithms, as well as network-based communication in order to safely navigate various real-

world environments. Under ideal weather and traffic conditions, many AV systems are able to 

perform in a reliable manner. When adding rain, fog, snow, and dense or unpredictable traffic 

patterns, major challenges arise. Adverse weather reduces visibility, degrades sensor accuracy, 

and also increases perception uncertainty. Similarly, heavy traffic that changes rapidly requires 

faster and more reliable communication among vehicles and infrastructure to aid in the 

prevention of collisions and to maintain situational awareness. 

As vehicle automation advances, communication technologies such as Vehicle-to-Vehicle 

(V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Network (V2N), and IoV systems have 

become essential components of AV safety. Emerging 5G and 6G networks, along with multi-

access edge computing (MEC), enable low-latency data exchange and distributed intelligence 

that can support AV decision-making during sensor degradation. At the same time, cooperative 

perception and sensor fusion frameworks allow vehicles to share information to mitigate the 

effects of occlusions and weather-related visibility loss. 

Addressing AV safety in various environments is critical for mitigating risk in real-world 

scenarios. To be able to deploy AVs, reliability is required across all conditions. Adverse 

weather is a leading cause of sensor failure within current systems. Additionally, network-based 

safety mechanisms can assist with reducing dependence on local sensors. V2X allows vehicles to 

share perception data and warnings even when the visibility is limited. Low-latency 

communications assist with improving reaction time, as 5G/6G, and edge computing enables 

near real-time updates that aid in preventing collisions in dynamic environments. Overall, 

understanding system limitations supports creating safer designs. Examining vulnerabilities in 

sensors, communication networks, and traffic coordination helps identify the gaps that must be 

resolved for full autonomy. 

This project is aimed at better understanding, communicating, and helping AV manufacturers to 

design their vehicles to navigate adverse weather conditions and road construction in the safest 

manner possible. We will explore the technology and ideologies that can create a safer and more 

reliable Autonomous Vehicle experience when traveling in adverse weather or high construction 

areas. To do so, we will explore different research that includes predictive models from human-

drivers, case studies from AV manufacturers like Waymo and Tesla, V2X systems, multiple 

types of sensors, and the inclusion of all sensors in one AV architecture. 

Key Questions: 

1. How can predictive modeling of extreme weather hazards aid real-time navigation 

decisions for AV safety? 

2. How do 5G/6G networks and edge computing improve safety through low-latency 

communication, and what delays remain problematic in adverse conditions? 

3. How can V2X communication assist safety amongst autonomous vehicles when 

weather reduces sensor performance? 

4. How do autonomous vehicles safely handle detours and work zones? 
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5. What are the most critical design features and technologies that enhance passenger 

and driver safety in modern vehicles? 

 

2. Related Work 

[4] U. Yusuf, S. Khan, and R. Souissi, “Vehicle-to-everything (V2X) in the autonomous 

vehicle domain – A technical review of communication, sensor, and AI technologies for 

road user safety,” Transportation Safety and Environment, 2024.  

This article is an extensive review of V2X technologies and highlights the important role of low-

latency communication for autonomous vehicle safety. It focuses on how 5G and the upcoming 

6G networks enable cooperative perception, real-time hazard sharing, and reliable 

communication between vehicles, infrastructure, and people who are driving. The authors 

emphasize that safety for critical applications needs very reliable, low-delay messaging, which 

5G NR-V2X and edge computing architectures are specially designed to support. These 

applications include emergency braking alerts, VRU warnings, intersection collision avoidance, 

etc. However, the review also shows reoccurring challenges such as non-line-of-sight (NLOS) 

signal obstructions, adverse weather conditions that force automated vehicles to rely heavily on 

network-assisted sensing, channel congestion in dense traffic, and increasing latency budgets. 

These limitations identify that unresolved delay sources continue to be a problem for consistent 

real-time decision-making, even with 5G/MEC technologies very enhanced in AV safety. This 

article directly answers the research questions: “How do 5G/6G networks and edge computing 

improve safety through low-latency communication, and what delays remain problematic in 

adverse conditions?” 

 

[11] Chen, P., Shi, L., Wang, H., & Xu, J. (2021). Predicting traffic accident risks under 

extreme weather conditions using machine learning methods. Accident Analysis & 

Prevention, 162, 106358. 

This paper studies how machine learning can predict accident risk when under extreme weather 

conditions. The authors’ idea is to incorporate historical crash data with different weather 

conditions. The study looks at different methods/algorithms of combining crash data and weather 

conditions like random forests, gradient boosting, and neural networks. Random forests are used 

as a learning method for the models to create a relationship between weather conditions and 

accident likelihood, gradient boosting is an iterative learning method that uses the errors of 

previous trees to improve predictions, and neural networks are used to analyze and encapsulate 

patterns in the crash and weather condition combined dataset. The authors use these algorithms 

in their models and discover that those using weather conditions as well as date and time data. 

The results they find show that weather conditions play a significant role in accident likelihood, 

and ML-based prediction systems can be utilized to better traffic management and safety alerts. 

This helps to answers the research question: “How can predictive modeling of extreme weather 

hazards aid real-time navigation decisions for AV safety?” 

 

[13] Luo, H., Wang, X., Yin, X., Sun, L., Xie, Y., Peng, X., ... & Hu, J. (2023). Multi-modal 

learning for AV perception in adverse weather. Sensors, 23(18), 7693. 

This paper studies how multi-modal learning techniques can be designed to aid AV perception in 
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adverse weather. The authors’ proposed approach is to create a fusion framework that integrates 

LiDAR, radar, cameras, and thermal data with deep neural networks (like those talked about in 

[11]) to accommodate the weaknesses of each sensor type. The results show that in fog, rain, and 

snow the multi-modal models improve object detection accuracy and range in comparison to 

single-modal sensors. This helps to answers the research question: “How can predictive 

modeling of extreme weather hazards aid real-time navigation decisions for AV safety?” 

 

[14] Han, K., & Twumasi-Boakye, R. (2024). Deep learning for weather prediction: A 

comprehensive review. Artificial Intelligence Review, 57(3), 4381–4412. 

This paper establishes a review of deep learning methods applied to weather prediction. The 

review covers deep learning models that use CNN-based approaches to models using transformer 

architectures and neural networks based on physics. The paper covers how modern AI models 

outperform normal numerical weather prediction methods. It also mentions challenges like lack 

of sufficient data, the ability to generalize across different areas and regions, computational 

limitations, etc. This helps to answers the research question: “How can predictive modeling of 

extreme weather hazards aid real-time navigation decisions for AV safety?” 

 

[17] Li, M., Song, T., Chen, R., & Sun, J. (2023). AI-powered object detection and trajectory 

prediction for AV navigation in poor weather. IEEE Access, 11, 12345–12357. 

This paper studies how AI-driven object detection and trajectory prediction methods can help aid 

AVs navigate through adverse weather conditions. The authors create a deep learning framework 

that improves detection when there is low visibility as well as incorporating trajectory 

predictions to help anticipate what the other vehicles on the road are going to do. Their 

framework uses multiple features to do so, including image enhancement, feature extraction, and 

motion modeling to maintain the accuracy needed in adverse weather conditions. The results 

show that there is improved accuracy in the AI-powered models in comparison to normal models 

which shows that AI-powered models are effective in their predictions and insight even in 

adverse weather. This helps to answer the research question: “How can predictive modeling of 

extreme weather hazards aid real-time navigation decisions for AV safety?” 

 

[18] Singh, P., & Islam, M. (2020). Movement of autonomous vehicles in work zone using 

new pavement marking: A new approach. Journal of Transportation Technologies, 10(3), 

183–197. 

The authors investigate how new pavement marking designs are able to support safer AVs in 

hazardous and unpredictable environments called works zones. Within the article, there is 

emphasis on how AVs depend heavily on lane markings and road-surface cues to aid in 

navigation. However, work zones are often considered disruptive to the cues due to the additions 

of temporary lanes, construction signs, and additional factors such as faded markings. There are 

several issues mentioned, such as AV vulnerability to ambiguous lane markings, as work zones 

contain irregularities within markings or the addition of temporary markings, which confuse AV 

perception systems, increasing collision risk. To mitigate risk, a new pavement-marking system 

is introduced to enhance visibility with the intention of improving AV detection under disrupted 

road conditions. The high contrast within the markings also improves visibility under rain, low 

light, or partial occlusion. Regarding research questions, the article assists in answering “how do 

autonomous vehicles safely handle detours and work zones?”  
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[22] I. F. Akyildiz, S.-C. Lin, and P. Wang, “Wireless software-defined networks (W-SDNs) 

and network function virtualization (NFV) for 5G cellular systems: An overview and 

qualitative evaluation,” Computer Networks, vol. 93, pp. 66–79, 2015. 

This paper explains how 5G cellular systems rely on Wireless Software Defined Networking (W-

SDN) and Network Function Virtualization (NFV) to achieve ultra-low latency, high reliability, 

and flexible network control, all of these are required for critical safety applications such as 

autonomous driving. The authors describe how SDN separates the control and data planes, which 

creates faster routing decisions, dynamic bandwidth allocation, and immediate network 

configuration during high mobility. These are all key factors that help minimize communication 

delays. NFV better improves performance by virtualizing network functions and deploying them 

closer to end users, which is an early conceptual model of modern mobile edge computing 

(MEC). This paper also finds many unresolved sources of latency, which includes 

synchronization overhead across virtualized functions, congestion in ultra-dense 5G 

deployments, signaling delays from centralized SDN controllers, and delay spiked during 

handover or rapid user mobility. Overall, this literature helps answer the research question “How 

do 5G/6G networks and edge computing improve safety through low-latency communication, 

and what delays remain problematic in adverse conditions?”. 

 

[23] C. Flores-Moyano and E. Grampín, “SDN and NFV in 5G mobile networks: 

Advancements and challenges,” in Proc. IEEE Latin America Transactions, 2017. 

This paper reviews how Software-Defined Networking (SDN) and Network Function 

Virtualization (NFV) help 5G networks achieve lower latency and higher flexibility, which is 

very important for critical safety applications such as autonomous vehicles. The authors explain 

that SND allows faster routing decisions through centralized control, which NFV moves 

important network functions closer to users, reducing the time it takes for data to travel across 

network. They also highlight many challenges that still make delays, which includes contoller-

switch communication overhead, virtualization processing time, congestion in dense areas, and 

delays during mobility events such as handovers. Overall, this article helps answer the research 

question “How do 5G/6G networks and edge computing improve safety through low-latency 

communication, and what delays remain problematic in adverse conditions?”. 

 

[24] M. Ray and S. Kumar, “A systematic review on SDN/NFV-based edge–cloud IoT 

architectures: Challenges and future directions,” Future Generation Computer Systems, 

2021. 

This paper reviews how combining SDN, NFV, and edge computing can reduce latency in loT 

and connected systems by computing and network functions closer to end devices. The authors 

explain that SND provides centralized traffic control and faster route adjustments, while NFV 

allows key services to run virtualized edge nodes instead of distant cloud servers, which results 

in shorter response times. The authors also go over challenges that still make delays, such as high 

traffic loads, synchronization issues across distributed nodes, limited edge resources, and 

perfromance drops during network congestion or rapid mobility. The paper focuses on loT very 

broadly, but these ideas apply directly to autonomous vehicles that depend on how low-latency 

edge processing is for safety. Overall, the article supports the research question “How do 5G/6G 
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networks and edge computing improve safety through low-latency communication, and what 

delays remain problematic in adverse conditions? “. 

3. Safety Centric Design for Autonomous Vehicles 

The safety of Autonomous Vehicles (AVs) is a drastically important and constantly evolving 

issue within the world of AVs. The more you analyze the idea of a fully autonomous vehicle, the 

more issues and challenges that arise. Unlike a normal vehicle, AVs do not have a driver that can 

physically see the road ahead of them and act accordingly to the road. When a human driver is 

driving during adverse weather conditions, they are more likely to take the precautions to be able 

to create the safest driving experience as possible, like turning their windshield wipers on, 

slowing down, or increase following distance. AVs must rely on sensors, cameras, and radars so 

how can we decrease the chances of the equipment failing during these harsh conditions. AVs 

also must be able to detect and act on obstacles in the road. Humans can see the pothole or traffic 

cone on the road, but how can AVs ensure they detect an obstacle quickly and accurately avoid 

the obstacle while still ensuring safety? There are many different safety considerations when 

designing an autonomous vehicle that are drastically important to ensure the safety of the car and 

the passengers riding inside. This section will analyze some of the key aspects and 

considerations that are necessary to build and implement a safe and reliable vehicle. 

3.1. Special Key Considerations for Safety of the Car and Passengers 

Autonomous Vehicle (AV) systems require IoVT and V2X to communicate, allowing them to 

operate safely and correctly. This opens these vehicles to outside attack as well. This includes 

attacks such as intruder vehicles feeding false information to the network causing issues and 

accidents [21]. Communication between vehicles also always involves malicious agents to 

interrupt communication between vehicles and/or infrastructure. These attacks include message 

modification, GPS spoofing, and Sybil’s assault [21]. Another key security issue is Overhead. As 

ITS systems must be very fast and accurate, security measures may slow down the system. There 

is also the issue of security vulnerabilities that are a result of different manufacturers' standards 

[21]. 

Autonomous vehicles look to reduce the number of automotive accidents; however, accidents 

will still happen, and post-accident safety is considered less. A key example of this is Cruise 

taxis in San Francisco. In 2023, a Cruise vehicle was involved in an accident where it dragged a 

pedestrian 20 feet due to its post-accident procedure [27]. The vehicle also had no system to 

communicate with law enforcement and had no system to check for a person under the vehicle 

[27]. The AV also only began communicating with its handler following the incident and 

continued to drag the pedestrian for several seconds afterwards [27]. 

AV will reduce the human component of driving to increase safety. This, however, brings up 

problems with human machine interactions. Human drivers may drive in ways that disrupt AVs 

and cause delays and problems with traffic flow [34]. Pedestrians also present a problem as they 

can act in unpredictable ways, not follow laws, and appear suddenly from blindspots[34]. 

Vehicles to pedestrian communication are also important. It is relatively easy for a pedestrian to 

identify signals from another human, but AVs don’t communicate the same information to 

pedestrians [34]. This can cause problems with pedestrians misunderstanding an AVs behavior 

[34]. 

3.2. Detecting, Avoiding, and Mitigating Obstacles on the Roads 



   

 6 

A main piece of designing the safety for Autonomous Vehicles is making sure they can detect, 

avoid, and mitigate any obstacles on the road. A lot of research has a strong foundation for 

knowing how 5G networks, SDN/NFV architectures, and edge computing can improve 

communication performance, but there still is a lack of studies that connects these technologies 

to autonomous vehicle safety under adverse conditions. An example of this is from the V2X 

review by Yusuf et al. [4] talks about how 5G/6G and cooperative communication improve 

safety message delivery and reduce latency, but the study does no evaluate how these systems 

respond when visibility is bad or when sensors become unreliable due to weather. Similarly, the 

foundational 5G architecture work by Akyildiz et al. [22] discusses how SDN and NFV help 5G 

networks achieve lower latency, but the paper shows results in ideal networking scenarios and 

does not consider sensor degradation, vehicle mobility, or environmental disruptions. 

Additionally, the literature on SDN/NFV in 5G mobile networks by Flores-Moyano and 

Grampín [23] finds important delay sources such as handovers, congestion, and controller 

overhead, yet it does not apply these challenges to critical safety AV scenarios where delays are 

completely affecting collision avoidance and hazard detection. Also, the SDN/NFV edge cloud 

IoT architecture review by Ray and Kumar [24] elaborates on how distributing computation to 

edge nodes can reduce latency, but it does not study how well these systems perform in quick 

changing, weather heavy environments or under high traffic which is very common in AV 

applications. 

Across these four papers, the discussion focuses on theoretical network improvements instead of 

practical safety performance during adverse conditions such as rain, fog, or non-line-of-sight 

situations. None of the works consider the combined delay around communication, sensing, fast 

decision making, and edge process. All of these are critical for autonomous vehicle safety, and 

because of this, there is a limited understanding of whether 5G/6G and edge computing can 

maintain the necessary reliability and low latency during real-world conditions that bring 

unpredictable obstacles and constant interference. Our project addresses this gap by examining 

how these technologies behave under these adverse conditions and finding which sources of 

delay continue to pose safety risks for autonomous vehicles. 

3.3. Extreme Weather Navigation Control for Safety of AV 

Extreme weather navigation control focuses on how AVs safely drive through adverse weather 

conditions like pouring rain, snow, fog, and ice. This topic is important because adverse weather 

can hinder the performance of the sensors and systems in place in AVs that allow them to 

operate safely. Common AV sensors like cameras, LiDAR, and radar will lose reliability when 

weather blocks signals or introduces unwanted or incorrect signals and information in the sensor 

data.  With this in mind, extreme and adverse weather conditions are consistently one of the 

leading challenges for autonomous vehicles. This challenge must be addressed for AVs to be 

released to the public and ensure full reliability of the vehicle. This is because if the AV cannot 

make accurate predictions and real-time decisions during adverse weather like those mentioned 

previously, then the AV cannot be trusted on the road as these conditions are sometimes 

unpredictable. For example, in Florida, random points of heavy rainfall are common when 

driving throughout the state, and the AVs must be able to handle these conditions on the spot.   

With this issue in mind, there has been a multitude of research that aims to create a more 

versatile and accurate prediction and perception system for AVs. One study shows that 

uncertainty-aware domain adaptation allows AVs to recognize when their sensors are unreliable 

because of weather changes [10]. This uncertainty-aware adaptation approach allows AVs to 
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adapt to the weather changes by making the correct corresponding safety actions like increasing 

following distance. Another study found that multi-modal learning or combining multiple 

sensors helps AVs keep consistent awareness even in adverse weather conditions since the 

sensors can help each other if one of them fails [13].   

Adverse and extreme weather creates and increases driving hazards and risks normally, so 

having the sensors and prediction systems that AVs hold can actually provide a benefit to 

passengers. A 2021 study showed that machine learning models can predict the chances of 

accidents during extreme weather by using historical accident data across environmental 

conditions [11]. This study can be further backed up with the findings and methods from Han et 

al. [14] who found that using modern AI deep learning techniques on real weather patterns can 

create a prediction technology better than normal weather predictions. Using these findings and 

results, we can utilize this method so that AVs can make real-time decisions about what roads 

and paths to take during the inclement weather. These routing decisions during inclement 

weather is also supported by another study that used real-time and data on past weather patterns 

to help AVs avoid roads and places that will have low visibility or icy and nonideal road surfaces 

[15]. Another viable solution found by Zeng et al. [16] was training the AV perception systems 

on synthetic weather data which found that when adding synthetic rain, fog, and snow data to 

training images the model can detect obstacles in the road when visibility is low. These methods 

combined could create a reliable and safe navigation system that can handle adverse and extreme 

weather conditions.  

Our contribution is to analyze, summarize, and connect different methods of providing a safer 

and reliable navigation system for autonomous vehicles when exposed to inclement and extreme 

weather. There are several methods described in this section, 3.3, that describe how sensor 

reliability, uncertainty-aware perception systems, combining multiple sensors (multi-modal), risk 

of accident prediction and avoidance, as well as real-time decisions on route choices to minimize 

the risk of an accident. All these systems, training techniques, and methods can be used in unison 

with each other to create a safer and more reliable AV system when proposed with extreme 

weather.   

3.4. Instructions Damage Protections for the Car on the Roads 

Damage protection refers to the set of features and design strategies that help a vehicle prevent, 

withstand, and reduce physical damage during real-world driving. For autonomous vehicles, this 

involves not only the traditional safety structures found in all modern cars, such as crumple 

zones, bumpers, and reinforced side frames, but also protections that maintain the functionality 

of the sensing systems that autonomous vehicles rely on to interpret their surroundings. Damage 

and failure for things such as radar sensors, LiDAR sensors, and ultrasonic sensors which are all 

integral parts of autonomous vehicle functionality, potentially have catastrophic effects on safety 

(Matos, Francisco et al, 2024). Therefore, “damage protections” for autonomous vehicles must 

address both vehicle body integrity and sensor survivability. 

Damage protections for autonomous vehicles sensors include a wide variety of things. As with 

all things, sensors in autonomous vehicles don’t only wear down with use but wear down with 

time. There are many ways in which AVs protect their sensors, so vehicles remain safe overtime, 

First, is the software approach. In AV design, research has extensively targeted the idea of 

“sensor fusion” and algorithmic approaches. The idea of sensor fusion is that by combining the 

characteristics of AVs sensors, AVs are able to get a better idea of its surroundings and make 
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better decisions (Matos, Francisco et al, 2024). As relating to damage protections, sensor fusion 

is useful, because as sensors degrade performance worsens, or loss of functionality entirely, 

instead of just losing functionality of sensing, it is able to use fusion algorithms to work with 

other sensors in order for the AV to maintain a safe and operable state, until maintenance on 

sensors is achievable. AVs also provide physical damage protections for cars. These are things 

like special lens covers for cameras, which help to mitigate damage from ultraviolet light, or 

covers for radar and lidar sensors which make help prevent them from damage from debris on 

the road, dust, and regular wear and tear from driving conditions, as well as potential accidents.  

 

3.5. Fault-Tolerant Measures: Preventive & Reactive On-Roads 

As of 2023, 40,990 fatalities occurred regarding motor vehicle crashes [37]. AVs have the 

potential to lessen fatality rates through preventive and reactive safety measures and creating 

systems that are fault tolerant. 

Fault tolerance within AVs is defined as the ability of the system to be able to maintain safe 

behavior despite faults in one or more areas such as sensors, software, actuators, or the 

environment itself. Regarding on-road operation, this becomes critical as traffic hazards or 

adverse weather can degrade perception and reduce control performance.  

Many preventive measures originate in the development of the AV and the mechanisms to create 

a safe system before allowing the AV to go on the road, creating a safer environment and a 

decrease in projected errors rates. Preventive measures implemented to enhance AV safety 

include several mechanisms and sensors such as light detection and ranging (LIDAR), which 

uses pulses of lasers to create models of the surrounding environment in 3D [38]. Systems also 

developed for integration within the AV is AI to enhance decision-making on the road, further 

preventing accidents and additional hazards. Cybersecurity protocols are also put in place prior 

to allowing the AV on the road to mitigate unauthorized users from tampering with the safety of 

the AV as well as the safety of the objects interacting with the AV. In addition to developing 

several mechanisms, systems are tested on to ensure validation before on-road implementation.  

Reactive measures refer to how the AV reacts to a current event and the response being taken 

afterward. Rather than a prevention response, a reactive response includes active decision-

making. For example, traffic hazards are random events requiring the AV to have a reactive 

response through robust decision-making. Weather can also introduce a level of randomness 

such as heavy rain, snow, or fog that can reduce sensor visibility or road traction, prompting the 

AV to adjust driving behavior by lowering speed, and increasing following distance. Reactive 

capabilities ensure that, even when unexpected conditions arise, the AV maintains safe operation 

through adaptive planning and real-time risk assessment [39]. 

 

3.6. How AI Can Improve Safety of AV 

Artificial Intelligence (AI) significantly improves the safety and reliability of AVs through a 

multitude of factors, such as enhancing perception, prediction, and decision-making. Many 

safety challenges such as adverse weather and traffic hazards have prompted the development of 

AI-driven methods in order to assist AVs in maintaining safe operation even through 

uncertainties. 
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AI strengthens safety through trajectory prediction as well as behavioral modeling as machine 

learning models train on large-scale data to anticipate future events. The predictive ability gives 

AVs valuable milliseconds to adjust speed or lane position to reduce errors, such as collision 

risks. In complex road environments such as crowded intersections or work zones, AI prediction 

models assist in helping the AV understand what is currently occurring and what is likely to 

occur next. 

Another key safety component is the ability of AI to make decisions in real-time as well as plan 

adaptively. AVs must choose safe driving actions in situations involving uncertainty or 

insufficient sensor information. AI-based planning systems allow AVs to adjust their behavior 

dynamically, such as decreasing speed during rainy conditions or increasing following distances. 

Adaptive behaviors help ensure that AVs maintain safe operation even when unexpected 

situations arise. AI also improves fault detection and self-monitoring, which assist in early 

identification of sensor failures or system abnormalities. 

Overall, AI improves AV safety by providing enhanced perception, better anticipation of risk, 

and adaptive decision-making. When combined with robust hardware systems and 

communication architectures, AI allows autonomous vehicles to operate more safely across a 

wide range of environments. 

 

3.7. Strengths and Limitations    

AV safety systems offer several strengths that significantly enhance reliability on the road. One 

major strength is the use of redundant sensing and AI-driven perception, which allows AVs to 

maintain awareness even when certain sensors are degraded by environmental conditions, such 

as varying weather. Sensor fusion and predictive modeling improve obstacle detection and help 

the vehicle anticipate the behavior of other road users. AVs also benefit from extensive 

simulation testing and V2X communication, both of which increase situational awareness and 

reduce reaction time in critical safety events. 

However, limitations still remain. For example, AV performance can degrade when multiple 

sensors fail simultaneously, such as during heavy rain, fog, or snow, where even fusion 

algorithms may struggle to produce reliable outputs. Edge cases, particularly those involving 

unpredictable pedestrian behavior or temporary construction layout, continue to challenge AI 

models that have limited exposure to specific scenarios. Additionally, AV safety is constrained 

by data quality and environmental variability, as models trained in one region may not generalize 

well to new conditions. External dependencies, such as communication networks, can also create 

vulnerabilities during congestion or outages. 

Overall, while AVs incorporate strong safety mechanisms, the limitations highlight that further 

development in sensing, AI robustness, and system redundancy is required before fully 

autonomous operation can be consistently safe across all environments. 

4. Case Studies, Examples, and Analysis 

4.1. Case Studies 

This section provides a few strong case studies from the top markets in autonomous vehicles 

including Tesla, Waymo, and Cruise by General Motors. These case studies provide detailed 

statistical safety data that can be analyzed to get a better picture of what is needed to make safe 
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AVs. This section will explore how Tesla and Cruise tackle general safety issues within their AV 

systems and how Waymo is handling extreme weather navigation as well as general safety. 

These leading companies and innovators in the AV industry can provide a great synopsis of how 

the current technology can be used in real world applications to provide a safe riding experience 

for users as well as where the companies are trying to expand involving the safety of their 

passengers. 

4.1.1. Case Study 1 

This case study examines Tesla’s approach to autonomous vehicle safety. It has a focus on 

system limitations in adverse conditions, perception, and documented safety issues. Tesla’s Full 

Self-Driving (FSD) and Autopilot systems mainly rely on cameras for perception, which is 

known as Tesla Vision. According to Tesla’s FSD Safety Overview, the system is designed to 

use neural networks trained on real-world driving data to detect lanes, vehicles, pedestrians, and 

traffic controls, with frequent over-the-air updates to improve performance over time [35]. The 

Autopilot Support page further describes that these driver assistance systems are intended to 

assist an attentive driver, and the driver must be ready to always take over [36]. On the other 

hand, the camera design means that Tesla’s safety performance is very dependent on visibility 

and the sensor being clean. 

Tesla’s documents understand the important limitations in challenging environments. The Model 

3 Owner’s Manuel talks about how the Autopilot may not operate as expected when the cameras 

are obstructed, dirty, or affected by weather conditions such as fog, rain, snow, or direct sunlight 

that brings a glare. It also states that drivers should not rely on the system under these 

circumstances [41]. These limitations directly affect object detection, speed control, and lane 

recognition. When vision is poor, the system may not work properly to detect obstacles or 

interpret road markings in time for a safe reaction. Tesla’s warnings are made to ensure that 

drivers understand the system is not designed to handle all weather conditions and scenarios 

because the cameras may not work properly in these environments [41]. 

There are crash investigations that highlight how these limitations can contribute to safety 

failures. The NTSB’s detailed investigation of the Culver City crash, in which a Tesla Model S 

on Autopilot collided with a stationary fire truck. This case found that the Autopilot did not 

properly detect or respond to the stopped emergency vehicle ahead [39]. The report stated that 

the system continued tracking a vehicle that changed lanes, and once that vehicle moved, the 

Autopilot did not identify the fire truck in time, which caused the accident. NHTSA’s Autopilot 

crash investigation EA22-002 includes similar cases where Tesla's with Autopilot engaged struck 

stationary vehicles on highways, which suggests that there is a recurring pattern of difficulty 

recognizing stopped or slow obstacles under certain environmental or roadway conditions [40]. 

These investigations show that even when the system is working as intended, detection delays 

and misinterpretations can still happen. 

Overall, Tesla shows both the strengths and limitations of heavy perception autonomous driving 

systems. While its neural-network-based approach is helped through continuous data collection 

and frequent updates, the system’s reliance on camera visibility and its lack of sensing 

redundancy make vulnerability in adverse weather and complex visual environments. The 

combination of Tesla’s own documented findings and limitations from federal crash 

investigations indicates that environmental conditions and detection latency remain significant 
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safety challenges. This case study supports the research objective by showing how autonomous 

vehicle safety depends on not only local perception, but also the possible role of complementary 

systems, such as low-latency communication or additional sensing, in improving reliability under 

dangerous conditions. 

4.1.2. Case Study 2 

This case study will examine and analyze Waymo’s general safety techniques, the handling of 

extreme weather, and how Waymo aims to provide riders with a safe and reliable trip under these 

adverse conditions. Waymo’s general safety framework creates a foundation for its extreme 

weather handling to be built upon. Waymo is one of the largest fully autonomous vehicle 

systems which allows them to be able to obtain detailed data on different traffic patterns, road 

constructions, as well as human driving behaviors. Waymo often makes the comparison of 

performance between the Waymo’s automated drive and human driver data across a multitude of 

fully autonomous driving miles, showing reductions in serious injury crashes and low rates of 

significant collisions shown in Figure 1 [29]. They also consistently use independent analyses, 

performance comparison, and accident review processes to ensure that their safety models are up 

to date and refined. This structure that they have in place is a strong foundation for constantly 

improving and expanding their safety model to handle different scenarios, one of which being 

navigating through extreme weather conditions.   

Waymo has done a multitude of research, tests, and continuous brainstorming to ensure that their 

AVs are using the safest and most reliable approach for handling extreme weather. Their 

approach starts with transforming every AV into a mobile sensing node by using cameras, 

LiDAR, and radar signals which allows the AV to predict and understand different weather 

conditions like fog density, visibility levels, and precipitation levels [31]. This data is used to 

cross-reference with other weather prediction tools to ensure that the AVs prediction is precise 

and accurate [31]. The weather prediction maps that the AVs generated provide the vehicles with 

a better analysis that, allowing Waymo’s engineers to understand how perception systems work 

in even minor environmental changes. This same data is given to hyper-realistic simulations to 

give the Waymo team the ability to repeat and analyze different harsh precipitation weather 

conditions to continuously refine the perception and navigation technology in their AVs [32].  

Waymo also studies and ensures that their hardware advancements can support safer driving 

experiences in difficult environments. Better and vaster environmental coverage, thermal 

management, and protective design considerations are key factors in maintaining sensor 

reliability in difficult weather conditions like heavy rain, dense fog, cold temperatures, and snow 

[32]. The hardware improvements Waymo implements all go through closed-course stress tests 

and various large-scale simulations before being released on public roads which allows engineers 

to show reliability under unexpected conditions [32].  

The most important effort for navigating in extreme weather environments that Waymo is 

studying and working on is their all-weather autonomous driver. This is especially important for 

those areas in the world that have heavy winters that create harsh driving environments. Right 

now, Waymo has released vehicles in US locations, Michigan and Upstate New York, because 

conditions like snow, sleet, slush, and black ice are common and can all happen in one season 

which creates a rigorous testing environment for Waymo’s vehicles [33]. Waymo also has 

invested in closed-course facilities that can be used to recreate safe and repeatable tests under 

extreme weather scenarios like losing traction on black ice and heavy snow causing extremely 
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low levels of visibility [33]. These facilities are also used by the Waymo team to create winter 

conditions during different seasons, allowing them to be constantly testing and refining their all-

weather AV [33].   

Overall, Waymo and their team of engineers are constantly evolving, improving, and refining 

their AV models to ensure the safety of their riders in any condition. They create rigorous and 

thorough tests and simulations under multiple different weather conditions prior to releasing 

them into the real world for exposure to the elements of real time traffic during these weather 

conditions. The combination of these methods allows Waymo to be constantly approaching the 

end goal of providing a safe and reliable, but fully autonomous, driving experience even under 

extreme weather conditions. 

 

 
Figure 1: Statistics showing accident and collision rates of Waymo drivers in comparison to 

Human drivers [29] 

4.1.3. Case Study 3  

This case study will examine General Motors autonomous vehicles (AVs) subsidiary Cruise and 

an accident that was caused due to unaccounted for edge cases. Cruise was founded in 2013 and 

with a focus on autonomous vehicle technology [26]. In 2022 Cruise deployed a fleet of AVs 

taxis that were available for use in San Francisco for testing purposes. A key safety idea they 

employed their AVs to operate safely was Operational Design Domains (ODD), a set of 

conditions in which their autonomous vehicles are designed to function. In the 2022 taxi 

deployment the vehicles were restricted to a certain area they could operate in, there were also 

constraints for certain traffic elements such as roundabouts that can present issues to an AV, and 

specific times to avoid time specific traffic elements [26]. The weather was also a major safety 

concern, San Francisco was chosen because it receives low amounts of sleet, snow, and sand. 

Even then AV were designed to return to the main facility or safely exit traffic in poor weather 

conditions. ODD is used to avoid worse/edge cases that can decrease safety of AVs. Cruise also 

implements several backups for important systems in case of malfunction or errors; this keeps 

single part failure from causing catastrophic failures like how planes are designed [26]. Even 
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with these constraints Cruise AVs were removed from San Francisco following several 

accidents. One of these accidents shows several issues that come with Cruise’s safety 

implementation. On October 2, 2023, a pedestrian was hit by a human operated vehicle then 

dragged 20 feet by one of Cruise’s AVs [27]. The pedestrian entered a crosswalk while they 

were signaled not to and was hit by a Nissan vehicle and thrown into the pathway of a Cruise 

Taxi. The taxi failed to properly detect collision location and attempted to enter a Minimal Risk 

Condition (MRC) [27] defined by Cruise as “a state in which the Cruise AV has minimized 

safety risks to the extent possible within the driving context” [26]. In doing so It dragged the 

pedestrian 20 feet before stopping due to vehicle motion abnormality and not due to the 

pedestrian [27]. Below is a timeline of the vehicle's velocity and acceleration 

 

.  

Figure 2: AV velocity and acceleration profiles from EXPR 43. [27] 

 

 This incident was mostly due to poor implementation of safety. The AV successfully tracked the 

pedestrian and determined a collision was likely between the Nissan and the pedestrian but did 

not change behavior due to this prediction [27]. The AV also accelerated into the intersection 

falling to adhere to California law [27]. Following the collision, the vehicle stopped temporarily 

and proceeded forward, dragging the pedestrian. A key safety failure here is not fully considering 

pedestrian behavior. This is especially problematic because the vehicle’s prediction did not 

consider an interruption that would cause the pedestrian to stop and thus accelerated towards the 

pedestrian. Another key issue is the focus on entering an MRC. After the collision was detected, 

the vehicle's only focus was to attempt to enter an MRC. This shows that there are less safety 

considerations following an accident than there are before an accident. Specifically, the vehicle 

did not consider what it had hit even though it tracked the before and during the accident [27]. 

Another key issue was the lack of a human overview. The Cruise taxi had no human operation 

and took 5 seconds to connect to a human operator at which point it was already dragging the 

pedestrian. This incident also presents an issue with ODD-focused vehicles. Using ODD work to 
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reduce edge cases and make the vehicles more efficient, however, edge cases will still come up 

and in this case the design response causes untoward harm to a pedestrian. Even if you can 

constrain so much, there will be unconsidered edge cases that cause accidents like this. 

 

4.2. Examples 

There are many examples that could be included in the subject of autonomous vehicle safety. 

Examples are important as they can paint a concrete and short example that is easier to grasp 

than an entire case study. These examples still showcase some potential safety challenges and 

risks an AV could face. 

An example of AVs avoiding obstacles on the road is: During rainfall, a pothole in the road fills 

up with water and causes the camera to believe it is a puddle and will not avoid it which in turn 

causes a significant bump in the ride and could cause damage to the vehicle.  

An example of extreme weather navigation control is: During a drive in Florida, a sudden heavy 

downpour comes out of nowhere, which causes the sensors and cameras to not be able to adjust 

quickly enough, but an uncertainty-aware perception system causes the vehicle to immediately 

increase its following distance and decrease traveling speeds. This example shows the real-time 

uncertainty-aware adjustment system Majoros et al. [10] introduces. 

An example of damage protection for an AV on the road is: During a drive on less maintained 

back roads loose rocks are skipping up and hitting the sides of the AV, but the AV uses a tough 

scratch-resistant sensor and camera lenses which blocks the rocks from damaging any of the 

hardware. 

An example showing a key safety consideration for the passengers and the car is: While on a 

typical drive someone sends a fake GPS signal near a busy intersection making the AV believe 

the intersection is further than it actually is, causing a potential collision when the AV doesn’t 

stop. This shows the risk of GPS spoofing and how it can increase the risk of an accident. 

An example involving fault-tolerant measures is: During a drive the AV senses that the breaking 

is not as responsive as it should be, as soon as this is detected the AV safely pulls over to the side 

of the road and alerts the passenger and the AV’s operator. 

An example of how AI improves safety of AVs is: During a drive on the highway, there is a car 

in the lane to the right of the AV that is hovering over the lane’s marking, AI predicts that the 

vehicle is going to merge without a blinker, so to improve safety the AV reacts by increasing the 

gap between the AV and the other vehicle to allow them to merge. 

4.3. Discussions and Analysis 

Across the three case studies and examples shown in section 4.2, a clear pattern with 

autonomous vehicles is that they struggle when perception becomes unreliable. Waymo is shown 

to handle this the best with its multiple sensors and heavy simulation to maintain accuracy in 

rain, fog, and snow. Cruise limits where the vehicle can operate, but its case study shows that 

even strict boundaries, unexpected events can still lead to failures. Tesla, which relies on mainly 
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cameras, shows the most sensitivity to poor visibility. This is shown through several 

investigations that document late detections of vehicles that are at a complete stop. 

The examples of section 4.2 support this trend even more. Fog, traffic congestion, and sensor 

obstruction all create delays in how fast a vehicle can detect hazards. When detection is delayed, 

the vehicle has less time to mitigate or avoid obstacles, increasing the change of unsafe events.  

The overall analysis recommends that autonomous vehicles need stronger support systems when 

weather or road conditions reduce sensor reliability. Through additional sensing, improved 

prediction models, or external information sources, AVs must be able to compensate when local 

visibility and perception become limited. This relates to the project’s goals by showing why 

improving communication and reducing delay is very important for critical AV safety in real-

world conditions. 

 

5. Project Self-Evaluation 

5.1. Phases and Efforts 

This project when through four main phases. The first phase was team creation and organization. 

This phase focused on creating the team and developing a plan for moving forward and 

completing all deliverables in a reasonable time frame. The second phase was topic development 

and scope focusing. This phase focused on reducing the scope of our project and redefining our 

topic. The third and longest phases were literature review and further topic focusing. This phase 

focused entirely on gathering and reviewing academic material that would comprise the majority 

of the paper. This phase also further changed and focused on our topics. The final and shortest 

phase was paper writing and presentation creation. This phase distilled the information we 

obtained in the third phase and was when all deliverables were written 

5.2. Project Learning Outcomes 

Throughout the project, a deeper understanding of the technical environment and human-

centered challenges involved in AV safety were gained. Topics such as how communication 

systems and sensor reliability give a comprehensive perspective into the interactions that support 

safe AV performance in real-world environments. The research process strengthened the ability 

to evaluate academic literature to compare approaches and identify gaps that still exist within 

current AV technology as well as to synthesize the gathered information into a clear analysis. 

Overall, the project enhanced technical knowledge of AV systems and improved various skills 

such as collaboration, research, and engineering communication. 

5.3. Project Strengths and Limitation 

The strength of this project is being able to cross reference and analyze multiple different papers 

and findings as well as compare them to what is currently being implemented in our case studies. 

This will allow us to give our contribution to the science and innovation of autonomous vehicles. 

This study takes in many different sources and combines them into a single place for those 

looking to find a hub that you can reference to find topics among AV safety that interest you, 

learn important details about them, understand how they have been implemented or could be 

implemented, and then further research on a more specific and narrowed down topic. This leads 

to the limitations of this project, where in this project it is difficult to have many details about 
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one topic when the topic of autonomous vehicles is very broad. The scope was narrowed down, 

but it would be too much to put a full research focus on each specific topic as it may cause the 

reader to not be able to retain or finish the paper as that would too much information to be given 

at one time. To minimize this limitation, we ensure that each section has enough detail to inspire 

engineers or researchers to want to dive deeper into any of the topics covered. 

6. Proposal for Future Work 

There are many unanswered and untested questions that arose from this study that we either did 

not have the time to solve or did not have the resources and budget to test them. One of the most 

important questions that arose from this study is how to take down the cost of all the sensors, 

cameras, LiDAR, etc that is needed to create the safe environment that was talked about in 

previous sections. In section 3.3, we found that multi-modal AVs provide a much safer riding 

experience in adverse weather because if one of the cameras or sensors failed, there was another 

that could compensate for this and continue on safely. The issue with this is implementing a 

multi-modal system can because expensive, especially when trying to use the top-of-the-line and 

safest technology. Future work could be to find ways to combine different sensors or cameras 

together or how to manufacture this technology in the most efficient way possible to cut costs to 

make the product cheaper for consumers. This future work could be aimed to help consumers if 

AVs are going to be sold directly to consumers or could be aimed to help AV manufacturers and 

AV taxi services to provide the cheaper rides will still making great profit margins to continue 

their own research.  

Another idea for future research can be researching how AVs can handle combined 

environments that we studied. The most important topic or combination topics would be how 

AVs are designed to handle construction and detours while there is heavy rain or snow. This is 

an important topic because there are many places where road work is common and can be 

ongoing while adverse weather conditions are also happening. In these situations, how are AVs 

and AV engineers working to ensure that the optimal detour path is still being followed while 

also ensuring that you are not putting the passengers at risk by taking a riskier road with less 

snow plowing or drainage. Also, what takes priority with this is it more important to stay on the 

shortest path to the destination or avoid back roads and staying on well-maintained roads more 

importantly. This topic and these questions are important and should be studied, but due to the 

scope of our research we were not able to fully dive into this hypothetical nor be able to run any 

type of test or simulation. 

A third proposal for future work is researching the lifespan of sensors because this is a very 

important topic that we did not get to research due to time constraints. In many sections 

throughout this paper, there was talk about adding or improving different sensors, radars, and 

cameras, but there was no mention of how long these will last, are they built to withstand 

multiple years of life, how long will they still send correct signals and data, what happens when 

dirt builds up, does this affect their sensing ability? These are all questions that need to be 

answered and studied because technology does not have an infinite life span. Many pieces of 

technology, especially items like sensors, can start to give false readings and begin to send noise 

as they get older. So, researching how these sensors are built to withstand time as well as being 
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able to handle dirty sensors efficiently is of the utmost importance. If this isn’t researched, how 

will we know that older AVs with old sensors can be trusted on the roadways? 

These are just a few potential options for future work that can evolve from this study. The world 

of AVs is constantly growing, and the topic of safety will be everlasting, so researching safety 

problems and finding solutions is very important for the future and AVs right now. As already 

mentioned, there are plenty of topics and we chose a few that were found throughout our own 

research, but there are many more that can be discovered.  

7. Conclusions 

This study was focused on autonomous vehicle safety measures and safety shortcomings.  

As AVs become more prevalent, these safety measures and shortcomings will become 

increasingly important. This study highlights important technology, safety concerns, and current 

problems. This study asked important questions about safety including fault tolerance measures, 

vehicle protection to reduce wear, extreme weather navigation, obstacle avoidance, potential 

improvement with applications, and others. This study looked at currently available AVs and 

their positive improvement and their failings. This study shows the improvement in safety 

technology for AVs but also showed that there was significgant room for improvement in safety 

systems. 
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